Tag Archives: Stephen Jay Gould

I spent too much time on my last post, but I really wanted to push it out. I realized I never came out and stated my idea. Partly, it’s because it might sound controversial unless I develop it properly. I’m glad I waited, because Joshua Timmer, of Ars Technica, pointed to a new study that is relevant to my points here.

In  my previous essay, I had presented Stephen Jay Gould’s idea of dual magisteria, which addresses how one engages with the world. In Rocks of Ages, Gould places undue emphasis on religion as a major counter-point to the scientific descriptions of the physical world. He does mention that there could be other domains of thought, but Gould writes they would encompass other magisteria. Here, Gould did not go far enough; it suffices to group religion as one of many intuitive, personal ways of finding meaning in the world. Simply, there should be two magisteria: science, and all of non-scientific, intuition based ways of looking at the world.*

*The distinction is clear: there is a way to examine the material world, with experiments (although not necessarily their interpretation) providing a common frame of reference. Experiments are placed in this rarified realm because it is expressly constructed so that when methods are made available, other investigators can observe the same results. That is why one of the worst things you can say about a scientist’s findings is that it is not reproducible. 

In this context, my idea for how one might deal with science is that, functionally speaking, they can ignore it. This is possible since science itself, in the realm of meaning in one’s life, may have a lesser impact than other emotional, intuition based thinking. Second, when one aims to counter scientifically based policies, it is more about risk/benefit analysis, trade-offs, and marshalling political support, which actually has less to do with the underlying science and more about rational discourse. In other words,  it is possible to arrive at policies that are directly opposed to the recommendations based on scientific findings.

There is a distinct lack of courage from those who are opposed to science and distrust it because it is considered a Liberal domain (i.e. American Liberals tend to favor governmental intervention in regulating markets but  less  in one’s personal and social lives. The story goes that academia is populated by these liberal types.) These anti-science laymen lack courage because they avoid saying that their policies are at odds with the scientific consensus because they thought other considerations were more important.

So they couch their objections in scientific terms, and rather shoddily*. The proper argument for creationism in school isn’t in to make it an alternate scientific theory in biology class, but in a social studies or literature class, perhaps even an actual religious study. The goal of religion and these classes, as Neil Postman and Joseph Campbell realized, is to attempt to connect the impersonal world to human perception. At best, it can be as invigorating as a philosophy course and as an art appreciation course. It is interesting to me that so many myths do share elements in how they describe how the world began, with many such stories pre-dating even the gods of pharoanic Egpyt, let alone Christianity. There is power in these stories because while they are rudimentary attempts at explanation, in actuality they help us deal with the mysterious and the fear of dying at an approachable human level.

* Hence this strange, if not ironic call, for more facts. Again, my last essay about experts focused on this idea of splitting hairs, where all of a sudden hyper-specific observations are used and not the general theory. My point in that essay is that just simply emphasizing specific examples over the rule is not a simple act. The divergence may be due to chance – acceptable within almost all scientific frameworks – or may indicate an actual alternate cause. If that’s the case, not only must the new model explain why this observation happened, but it must also address why all the other observations we’ve seen arose and was addressed by the other theory. Some type of analytical closure is needed to address how we could have gotten things so wrong. One might argue that Occam’s Razor helps us avoid this situation where we go with an explanation that agrees with most observations – one clear example of this is the models for an earth-centric versus a heliocentric model of the solar system.

I would only point out that the religious studies curriculum would be at odds with what the American (Religious) Conservatives (i.e. less government regulation for economic markets but more constraints in personal lives) desire because any such comparison of religion would naturally lead students to question how Christianity, Islam or (religious) Judaism differ from the myths that had been so callously discarded.* Again, these zealots lack the courage to say that the strength of religion lies specifically in helping believers come to terms with the cycle of life and death and the harshness of the world. By continually using stories of a Jewish guru, who lived 2000 years ago, as a basis to counter scientific findings made from observations with modern equipment, it cheapens Christ and makes the religious look silly. Are we really to think that these Holy Books are relevant to how one interprets molecular biology data showing how closely related humans are to primates and mice? Scientific interpretation and finding meaning germane to our emotional needs (or explaining the human condition) are two different things. There are any such stories one can concoct from religion, because so many stories in holy books are allegorical. We can change stories to fit the facts.

* I once asked my friend, who is a scientist and evangelical Christian, why he believes in Christianity and not, say, Zeus. He replied that Christianity is real and Zeus isn’t. He pointed to the archaeological evidence for the history of the Jews in the Old Testament and of the documentary evidence of Christ and his Apostles for the New. To which I can only suggest that, there is also evidence that the Trojan War happened. We have many stories of the Greek gods and much archaeological evidence of the beliefs of the Homeric Greeks. Does that in itself proves that the Greek pantheon of gods exists? 


At this point in American political culture, we are overly concerned with expertise, the irony of which is that we tend to pigeonhole these distinct voices, rather than to heed their advice. The pushback from scientists is that they tend to dismiss laymen as cranks. These approaches are antagonistic.

On occasion, I hear fellow scientists, when they get annoyed with lay people, brush off by claiming that their bit of science is hard and that laymen shouldn’t comment. That may be true, but as I wrote in my last essay, the tradeoff from academia is that at some point, we publicize our research to other scientists. I go further and suggest that if we are already doing this, we might as well write explicitly to laymen. In the end, it is hoped that our research is of significance and worth including in curricula – for educational purposes.

Naturally, scientific discussions tend to be easier between scientists, even if they ply their trade in different fields. We know the lingo. More importantly, we recognize that there are benchmarks for good research (control experiments, multiple trials, randomized sample sets, published methods and analysis techniques, blind trials where necessary, experiments specifically designed to test for alternate explanations, and so forth) and generally scientists do tend to read broadly. As a result, they do tend to ask questions, not as pointed as an expert might, but they aren’t at a rudimentary level either.

My own background can provide an example. My undergraduate background was biochemistry; my graduate work and one post-doc stint focused on neuroscience, specifically olfactory physiology. My current work as a staff scientist is as a cell-biologist/image analyst, running cell based assays and writing high-content analysis algorithms. Lately, my group has pushed our technology for clinical application in clinical immunology. This is not to say that I understand all these fields to the same degree as people who have spent many more years than I. The common skillset of doing science allows people like me to expand into new fields.

It isn’t as if I ignore biochemistry concepts even now, nor did my work in olfactory physiology meant I simply looked at neuronal function. The point of the latter research was to show how animals use different sniffing patterns to elicit specific neuronal response types that might be important for the animal’s understanding of its odor environment. Being aware of the overarching questions driving specific aims is crucial to a scientist’s success. Another example: Gordon Shepherd, an important researcher in olfaction, recently published a book on flavor perception titled Neurogastronomy. In it, he synthesizes olfactory and taste physiology, fluid dynamics and modeling of air flows in the human nose, the physico-chemical properties of food molecules, and human perception. His bread and butter, however, was in neuronal circuits, with emphasis on the olfactory bulb. Although his ultimate interests is in the mechanism by which neurons give rise to perception, much was unknown and so one must settle on sub-systems (such as olfaction, in “lower” life forms like honeybees, tiger salamanders, fruit flies, and rodents) for research and begin there.

So yes, I firmly believe that even if one is ignorant of a subject, one can come up to speed. It takes work and time. I am not arrogant enough to think that I am exempt from the Kruger-Dunning effect, but I do think that having the ability to identify gaps in knowledge, knowing what to read, finding experts to talk to, one can work to gain a competence in unfamiliar fields. If thinks that this cannot be the case, then there is no point in talking to one another or in reading.

I’ve only lately come to realize that science can be interpreted as a method for communication. We do this a very precise and stylized manner – introducing new ideas, detail methods, publicizing results, and discussing how our observations fit extant theory. Again, this has partly to do with the most basic elements of experimental design, geared to helping scientists remove their biases during analysis. The assumption here is that we argue interpretation and whether experiments were designed correctly. This can only work if the “recipe” and “results” are reported faithfully and  reproducible by anyone else.

Thus science differs from other forms of communication because we work to make transparent our work. Other fields have the luxury of using allegorical, indirect language. Scientific ideas are hard enough without putting some artistry in our language: for example, think of “as an object accelerates, it cannot reach the speed of light since its mass increases” or “if we know the position of an electron, we cannot know its momentum” or that “mass and energy are equivalent.” Because we scientists do try to simplify descriptions, we cannot turn around and tell laymen that what we do is hard to understand. Science is hard to do, especially to do well, but the telling of it can be straight-forward (I’m thinking of essay level exposition, not sound-bites.)

Despite science being a means of communication, it is not a debate in the sense of law; the point of distinction is not in whether the rhetoric is convincing, but whether the data best explain an idea that describes reality. There is no audience per se. Rather, the “audience” is whether the next experiment is consistent with the older findings. This is the predictive aspect of science: If what this other scientist published is true, than it affects my idea like so, and thus I should see this in my experiment.

But as soon as we step away from the realm of validating theories, we have descended into the muck surrounding the ivory tower. This isn’t bad at all; while basic research may be a worthwhile pursuit, I see no contradiction in having to justify that concept to the tax payers. While other scientists might scoff at having to consider applied research, I see this as necessary. In my field, we apply to grants from the National Institutes of Health. In fact, we must always suggest ways in which the research will ultimately benefit the clinicians who treat patients.

My bias is that I see applied research as compelling, and I see, as a red herring, the idea that all research must be pure and unsullied. In other words, I see the realm, or domain, or magisteria of science, as a rather small one. As soon as we start talking about funding, applicability, significance, whether we should pursue a line of research, we get into that fuzzy idea of the “other” magisteria.

This is the part where laymen falter. Laymen tend to argue from a grounding based more on non-scientific criteria than any scientific objections (based on methods, findings, or analysis). I have a very definite view that scientific discussions require the language and methods of science. It helps scientists tease apart assumptions, biases, and the empirical findings. It isn’t that all scientists can compartmentalize their thoughts, or that personal politics, background and temperament do not affect their thinking. It is that the whole system is set up to at least force scientists to justify their ideas (or biases) with data. Questioning scientific findings can only concern methods, analysis, interpretation, counter-evidence, and alternate hypotheses. Alternate ideas are always there; best idea or consensus by no means imply 100% certainty. It might simply be that the idea is the best of the worst.

However, if one were to discuss why the research is worthwhile, why a scientist pursued it, why something should be funded, what applications does it have, what are the resulting policy recommendations: all these are subject to debates. We have facts, as discovered by science, and then there is how we deal with facts. All of us must come to grip with them.  That is why I modified Gould’s opposed magisteria to contain two domains – science and not-science. The former speaks to objective truth, or at least a description of the material world that can be replicated by any sufficiently educated experimenter. The latter has to do with how humans perceive these hard truths.

While it seems like science is given a preeminent position, I would say that it is a rather small domain. Its language and methods are  precise – it is limited. The not-science magisterium encompasses everything else: our experience, our philosophical bent, our religious background, and so forth. These are bundled together because its “truth” is but an interpretation of how we look at the world. At the same time, it is much richer because it is unbounded by hard facts – it can be as fanciful as whatever the imagination can come up with. Its purpose is to help us with that vague concept of “meaning.” It is from this sphere that we might find compelling arguments and vivid imagery to help convince a lay audience.

Non-scientists can lay claim to the other half of the problem, that of receiving the message. Even if scientists write for the public, interested laymen need to listen. When laymen apply the label of “expert”, it is done with opprobrium, suggesting that the expert has narrow knowledge, but no “real world” experience. The ivory tower as therefore a prison rather than a place for undisturbed rumination. Non-scientists can apply the rigid standard to voices they do not like, simply by claiming that one’s expertise is not in the topic at hand. Naturally, the point is to keep experts corralled and voiceless. It is every bit the same exclusionary tactic that some scientists take in keeping laymen out of the realm of science.

My problem with it is that it allows opponents to treat each other not as individuals but as a belonging to the “other”, and eventually as caricatures. Instead of engaging with the science, it is the scientist who is attacked and demonized as mad or playing god and the laymen portrayed as ignorant, religious zealots. If nothing else, people are generally shrewd. Even if they do not appreciate the nuance of an experiment, they are probably experts in some other domain. This goes for scientists and non-scientists. Are we to suggest that they cannot do anything else, simply because they are competent in one field? Surely, all of us at various times and on numerous topics can hold incorrect opinions, but we can learn enough to become informed. To say that this is not possible is to argue that education is pointless.

No one claims that we can all become experts, but we can all learn enough to appreciate the current thinking. So the problem in how laymen and scientists relate to one another is that there is a vested interest in ignoring the fact that we all live in the world. In that sphere of public influence, rightly or wrongly, scientific facts and religious thoughts are just two of many points of view. In examining the greater good, one cannot argue in isolation.

For example, coal-fired and nuclear generated electricity provide one such example. Science and engineering have both resulted in these plants providing the most power efficiently. We already know that burning coal leads to increases in greenhouse gases. Nuclear power is generally cleaner at the point of origin, but it sure is spectacular when things go wrong or when we dispose of spent radioactive fuel. Science will not help us decide which power source to use, or whether we should re-wire our electrical grid and redesign our houses and appliances to consume less power, or whether we should build up hydroelectric power, wind farms, and solar power plants, or whether the trade-offs are worth it. Wisdom and knowledge is a tapestry. We would all do well to remember that we must argue using appropriate tools.

When arguing scientific points, it makes sense to ask about the assumptions, previous empirical evidence, the methodologies, and current findings. It is a fair question to ask for clarifications between current findings and facts that seem contradictory. But scientific validity is argued from empirical evidence, not from rational arguments like two opposing lawyers. There is no such thing as “all evidence.” There is curated best evidence. And while that is still no guarantee of the scientist being right, it will certainly take a bit of work for anyone to identify the actual problems with the model (and see my previous essay on experts for some examples.)

When arguing significance, we would do well to remember that matters of judgment can be based on personal experience and informed opinions. Benefit and risk can be of equal weight, with personal caution being the only guide as to what one prefers to emphasize. It would be great if we all have informed opinions, and that is all we can aspire to when we haven’t had the luxury of time spent cultivating an expertise on a topic. It is partly the scientists’ job to make available the resources to  help citizens become informed. Telling them to trust us is a non-starter; we argue that an argument from authority (and mostly with regard to religious authority) is no argument at all.

Scientists need to set an example and show laymen our actual methods; a fact is believed so because we see it – and you can too if you do exactly as we specify. The other component to this is to realize how  quickly we step outside of our scientific domain. Facts and coherent theory are not sufficient to inspire. Rhetoric becomes an important factor. If you don’t think language matters, just recall  “irradiated foods” and the public misperception. The reference is to light, not nuclear radiation, but consumers rebelled.

For laymen, they need to be more honest about the basis for their objections. Since society pays lip service to the idea of experts being good (when they argue in your favor), it is supposed that the only way to take themselves seriously is to argue from facts, even if their strongest arguments might be based on personal experience and circumstances. The result is that even non-scientists make a push into the domain of science, not realizing it that ideas are not weighted equally. One needs affirmative evidence to show the possibility that a theory can be a valid alternative. Pointing out the holes in global warming mechanisms or evolution can at best weaken those theories. In no way does criticizing science show why creationism is valid.*

*I try to avoid being snide, but I can’t help it. Please answer me this: does taking host during Communion result in the transubstantiation of the wafer and wine into the body and blood of Christ?  A favorite question that Protestants tweak Catholics with. You would think there is an verifiable answer here. Whose creation story – excuse me, theory – should we teach? The Sumerians’? The Egyptians’? The Greeks’? The Zoroastrians’? The Buddhists’? The Hindis’? For that matter, let me know which set of gods to pray to. Maybe before we even consider teaching creationism as an alternate theory to evolution and cosmology – a distinctly American phenomenon – the religious ought to figure out which story best “fits” the data.

The point of this essay is to suggest a more constructive way to talk about science. I see no issues with using compelling imagery to push scientific ideas. This is not acquiescing. I am recognizing the fact that no one likes their beliefs challenged. But scientific facts are as they are; they change only because of more precise observations from better tools and experiments. Our personal worldviews are what must change, if the two are ever at odds. We scientists should take advantage of the metaphors and allegories allowed us by the non-science domain, showing that even something as contentious as religious ideas can be reformulated, not necessarily refuted, and make palatable the bitter pill of hard-won scientific facts.


It’s annoying, but Goodreads hasn’t been updating my blog with the books I listed as finished. I realize that it might be better to give an update as a blog post anyway, to force myself into regular postings.

In the past 2 months I finished  Huraki Murakami’s 1Q84, John le Carre’s Tinker, Tailor, Soldier, Spy, Stephen Jay Gould’s Rocks of Ages, Joseph Campbell’s The Power of Myth, Jaron Lanier’s You Are Not a Gadget, Julian Barnes’s A History of the World in 10 1/2 Chapters and The Sense of an Ending, Suzanne Collin’s The Hunger Games, Catching Fire, and Mockingjay, Robert Anton Wilson’s  The Illuminatus! Trilogy, Jussi Adler-Olsen’s The Keeper of Lost Causes, Stephen Baker’s The Numerati, and Philip Kerr’s A Philosophical Investigation.

%d bloggers like this: